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Eigenvalue Problems on Infinite Intervals* 

By Peter A. Markowich 

Abstract.This paper is concerned with eigenvalue problems for boundary value problems of 
ordinary differential equations posed on an infinite interval. Problems of that kind occur for 
example in fluid mechanics when the stability of laminar flows is investigated. Characteriza- 
tions of eigenvalues and spectral subspaces are given, and the convergence of approximating 
problems, which are derived by reducing the infinite interval to a finite but large one and by 
imposing additional boundary conditions at the far end, is proved. Exponential convergence is 
shown for a large class of problems. 

1. Introduction. This paper deals with eigenvalue problems of the form 

(I. 1) y' - tA(t)y = XtOG(t)y, I t < xo, a >-1 

(1.2) By(l) = O, 

(1.3) y E C([1,x]): y E C([1, oo)) and lim y(t) exists, 
t- oo 

where the n X n matrices A, G E C([1, xo]) and A(oo) # 0. A theory for inhomoge- 
neous boundary value problems on infinite intervals has been developed (see Lentini 
and Keller [ 1], de Hoog and Weiss [6], [7], Markowich [ 12], [13], [14]) but not much 
attention has been paid to eigenvalue problems with a singularity of the second kind. 
de Hoog and Weiss [5] established a theory for eigenvalue problems in the case that 
the differential equation has a singularity of the first kind (a= -1) and that 
G(oo) = 0. They showed that the spectrum has no finite limit point and that the 
spectral subspaces associated with a particular eigenvalue are finite dimensional. 
They also considered difference schemes for problems which have been transformed 
to a finite interval, and they derived convergence results for eigenvalues and spectral 
subspaces using the collective compactness of the difference schemes. For the 
problems (1.1), (1.2), (1.3) de Hoog and Weiss [6] showed that all eigenvalues A, for 
which A(oo) + AG(oo) has no eigenvalue on the imaginary axis, are isolated and the 
spectral subspaces are finite dimensional. Their proofs hinge on the Fredholm 
property of the differential operator. 

The goal of this paper is twofold. First to derive properties of the spectrum and 
the generalized eigenvectors of (1.1), (1.2), (1.3) and second to consider the ap- 
proximating eigenvalue problems 

( 1.4) XT - tA(t )XT = X,tOG( t )XT I < t <- T T ~> I 
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(1.5) BxT(l) = 0, 

(1.6) S(T)XT(T) = 0. 

These problems, with a suitably chosen matrix S(T), are 'regular' two-point boundary 
eigenvalue problems which can be solved by any appropriate code, for example by 
collocation; see de Boor and Swartz [1]. A class of matrices S(T), for which the 
eigenvalues and spectral subspaces of (1.4), (1.5), (1.6) converge to those of (1.1), 
(1.2), (1.3), will be defined and the order of convergence, which turns out to be 
exponential in the most important cases, will be estimated. 

This paper is organized as follows. In Section 2 the case where A(oo) has no 
eigenvalue on the imaginary axis and where G(oo) 0 O is treated. In Section 3 the 
assumption G(oo) = 0 is eliminated. In Section 4 no assumption on the eigenvalues 
of A(oo) are made, but a certain order of convergence of G(t) to 0 is required. In 
Section 5 the Orr-Sommerfeld equation, a fluid dynamical problem posed as an 
eigenvalue problem on an infinite interval, is dealt with, and appropriate approxi- 
mating problems are devised. 

It is of particular interest that the approximation theory in the case G(Cx) =# 0 is 
treated by using Grigorieff's [3] 'discrete' approximation theory for eigenvalue 
problems, which allows the approximating operators to be defined on different 
spaces which-in some sense-converge to the space on which the eigenvalue 
problem is posed. This approach simplifies the analysis essentially. 

2. G(xo) = 0: The 'Compact' Case. We assume that A(x): = lim, c oA(t) has no 
eigenvalue with real part zero and that G(o) := limt. G(t) = 0. We transform 
A(oo) to its Jordan canonical form J(oo) 

(2.1) A(oo) = FJ(oo)F-1 

and assume that J(xo) has the block structure 

(2.2) J(cc) = diag(J.' , JOG, ),9 

where J.'j contains all Jordan blocks which have eigenvalues with real part larger 
than zero and J; contains all Jordan blocks with eigenvalues with negative real part. 
Let J,+, be a r+ Xr+ matrix and JO- a r_ Xr_ matrix, and let D+ and D_ be the 
projections onto the sum of invariant subspaces associated with the eigenyalues of 

J,+, and J-, ,respectively. We define a solution operator H of the problem 

(2.3) z' = toJ(x)z + tag(t) 

for all real a > -1 as follows: 

(2.4) (Hg)(t) = (t)f D+041(s)sag(s) ds + O( t)ftD -i(s)sg(s)ds, 
00 

where 8 > 1 and 

(2 .5) 0( t) = xp a a+ I a 

This operator has been used by de Hoog and Weiss [6], [7] and they showed that H: 
C([8, cx]) -* C([S, cc]) and that 

(2.6) (Hg)(oC) -J(oo)'1g(oO) 
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holds. As norm in C([6, xc]) we take I I - I I , which denotes the max-norm on the 
interval [6, xc]. Then H: C([6, xc]) -- C([6, xc]) is bounded uniformly in 8 2 1, and 

(2.7) Il(Hg)(t)II ? const(n1n[t/29 ] + exp( ao+ ( 2a+1 1) ta? g I[l oo])| 

holds for t > 2. 
Now we investigate the problem 

(2.8) y'- taA(t)y = taG(t)f(t), 1 < t < x, 

(2.9) By(l) = 0, 

(2.10) y EC([1, x0]), 

where f C([ 1, cc]). Substituting u F-'y, the -general solution of the transformed 
problem (2.8), (2.10) is 

(2. 1)(a) u(t) = 0(t)G_ + (H(J - J(oo))u)(t) + (HF-'Gf )(t), ( E Cr_, 

where J(t) = F- 'A(t)F and the n X r- matrix G_ is obtained from D_ by cancell- 
ing all columns which have only zero entries. 

Obviously, the operator 

(2.1 1)(b) H(J - J(oo)): C([6, x]) C([8, o]) 

fulfills 11 H( -J(xA))II 0 < 1 for 8 sufficiently large. Therefore u in (2.1 1)(a) is 
defined uniquely on [6, cc] and can be extended uniquely to [1, cc]. 

Defining 

(2.12) A- (t) ((I - H(J - J(cx)))'G )(t), 

(2.13) 4(Gf)(t) ((I - H(J - J(c))) 'HF-'Gf)(t), 

we write the general solution of (2.8), (2.9), (2.10) as 

(2.14) y(t) = F4_ (t)t + Fi (Gf )(t), t E [1, x], E cr 

So (2.8), (2.9), (2.10) is uniquely soluble for every f E C([1, cc]) if and only if the 
r_ X r_ matrix 

(2.15) BF4_ (1) is nonsingular. 

B is assumed to be an r_ X n matrix. (2.6) and (2.1 1)(a) imply that y(cc) = 0. 
We define the operator V as follows: 

(2.16) V: {C 1, oo])D- C([i, cc]), 

where y is the solution of (2.8), (2.9), (2.10). V is defined properly if and only if 
(2.15) holds. This is no restriction because if X = 0 is an eigenvalue of (1.1), (1.2), 
(1.3), we substitute X = X + y, so that the problem with A(t) replaced by A(t) + 
XG(t) has not y = 0 as eigenvalue. 

(2.7) and (2.14) imply that V is bounded. 
Obviously the eigenvalue problem (1.1), (1.2), (1.3) is equivalent to 

(2.17) Vf=,if, 
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with 

(2.18) 1/A. 

Our goal is to show that V is compact. We need the following 

LEMMA 2.1. Assume a E C([6, xo]), a(t) -O 0 as t -x cc, a > 0, and 8 2 1. Then the 

set A, defined by 

AG { f E C([ 1, xc]) f 11 fI[l,0o] < Cl, 11 f(t) II l C2a(t) for t 2 6, Pf'(t) I < C3to) 

for a E R, is conditionally compact in C([ 1, xc)]). 

Proof. Given E > 0, we choose T= T(E) 2 8 so large that a(t) < -/C2 for t > T. 

Obviously there is a finite collection of intervals Ii, for i = l(l)(N( c) - 1), whose 

conjunction is [1, T], and there are points ti in I, so that 

sup sup IIf(t,) -f(t)II <E, i =(1)(N(c) - 1) 
feA,, teI, 

This is fulfilled if I Ii I < c/(C3 T') with ti arbitrary in Ii. 
Setting tN(e) = c, Theorem 5, Chapter IV in Dunford and Schwartz [2] is satisfied 

and the lemma follows. 
From (2.1 1) and (2.7) we conclude that 

II(Vf )(t)II < const(II (t)G- 11 + I J(t) - J(c)II [t/2,oo] 

(2.19) + Il G(t) lI [t/2, ool + exp( a"& 1 ( 2 -1 1) ta?l)) If II[loo], 

t 8 > 2, 

holds because ( in (2.1 1)(a) equals - (BE+_ (1))- 'E4( f )(1). Setting 

a(t) = 114(t)G_ 11 + 1I J(t) -J()II [t/2,oo] + 11 G(t)I11 [t/2,,o] 

(2.20) + 2exp(0J1 (2a- I)t?) 

we notice that a( t) I 0 as t -x cc and therefore 

(2.21) { VfI f E C([1, xc]), I f II[,oo] < 1) A, 

for some constants Cl, C2, C3. So V is a compact operator on C([ 1, cc]). 
Therefore, the spectrum a(V) consists of a countable set of eigenvalues i # 0 of 

finite algebraic multiplicities, and = 0 E a(V) is the only possible accumulation 

point of the n's. The spectrum of compact operators is described in Dunford and 

Schwartz [2, Chapter VII, Theorem 5]. 
Let y (# 0) be a fixed eigenvalue of V. We want to investigate the spectral 

subspace associated with y. The spectral projection is given by 

(2.22) F E() 21 fI(z - V)ldz: C([i, cc]) -* C[il, cc]), 

where F is a circle centered at y which contains no other eigenvalue of V. Moreover, 

(2.23) rank(E(,u)) m, 

where m is the algebraic multiplicity of ,i. Let 

(2.24) Range(E ) = span{,( ,m} N(( - v) ) 
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hold, where the (P, are generalized eigenfunctions of V. N denotes the null space and 
,B the ascent of y - V. 

As the range of E is invariant under V, we get 
m 

(2.25) (pl - taA(t)(p = a,JtaG(t)(pJ, B(pl) = 0, (P C([1, C]). 
J=1 

The m X m matrix (ai.) can be assumed to be in Jordan canonical form with the 
only eigenvalue X = 1/y. This can always be achieved by a basis transformation. So 
every element (Pk is contained in a finite chain (p, , . . , (p,, which fulfills 

(2.26) Pr;- ta(A(t) + XG(t))(pr 0, B(pr,(1) = 0, (Pr, e C([1, xc]), 

(2.27) ;r, - ta(A(t) + XG(t))(pr = taG(t)(pr,, Br2(l) 0, (Pr2 E C([1, 'o]), 

(2.28) (Pr- ta(A(t) + XG(t))(pr, 
= taG(t)q)r, B(pr,(l) 0, ?)r, E C([1, 0o]). 

Using the properties of the spectrum c(V) and applying the estimates defined in 
Markowich [13, Sections 2, 3] to (2.26), (2.27), (2.28), we obtain 

THEOREM 2.1. The spectrum of (1.1), (1.2), (1.3) consists of countably many 
eigenvalues X which have no finite accumulation point, and every (generalized) 
eigenfunction (p satisfies 

(2.29) 1(p(t) II < const exp( +jta?i), ta + , 

where v_ is the largest (in modulus) negative real part of the eigenvalues of A(xo), and 
E = (8) > 0 fulfills v_ +E < 0 and E(8) -O 0 as 8 -x oo. 

Now we want to investigate the convergence of the eigenvalue and generalized 
eigenvectors of the approximating problems (1.4), (1.5), (1.6). As a notion of the 
distance of closed subspaces we use the 'gap' (see Osborn [16]) which is defined as 
follows 

(2.30) gap(M, N) = max sup dist(x, N), sup dist(M, y) 
x c-M YEC-N 

11 x 11 = 1 LiiY 11 

where M, N are closed subspaces of a Banach space (X, 11 11) and dist is defined as 

(2.31) dist(x, N) = inf lx -yll. 
yCN 

We define the operators VT for T sufficiently large by 

(2.32) VT: {C([l xV 1)f C([l, x ) 

where XT satisfies 

(2.33) XT-t%A(t)XT taG(t)f(t), 1 < t < T, 

(2.34) BxT(1) = O 

(2.35) S(T)xT(T) - 0, 
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and 

(2.36) xT(t) = xT(T) for t > T. 

This definition makes sense if and only if (2.33), (2.34), (2.35) is soluble for every 
f E C([ 1, x ]) and T sufficiently large. De Hoog and Weiss [7] have shown that this is 
the case if (2.15) holds and the r+ X n matrix S(T) satisfies 

(2.37) 11 S(T) II < const as T -x oc, 

(2.38) II(S(T)FG+ ) 111 < const as T xc, 

where the n X r+ matrix G+ is obtained by cancelling all columns of D+ which have 

only zero entries. Moreover the stability estimate 

(2.39) IIXT II [IT] < const(lIf 11 [IT] + IIy(T)II) 

holds for problems of the form (2.33), (2.34) and 

(2.40) S(T)XT(T) = y(T) 

instead of the homogeneous boundary condition (2.35). de Hoog and Weiss [7] have 
also shown that (2.38) is necessary if (2.37) holds, and they constructed matrices 
S(T) fulfilling (2.37), (2.38) explicitly. Obviously, the estimate (2.39) with y(T) _ 0 
and the definition of VT imply 

(2.41) II VT 11 [l ] < const. 

Every operator VT is compact because 

(2.42) II(VTf ) I [ ,T] < const T I If 11 [I,T] 

holds and VTf is constant on [T, xo]. By adding the identity S(T)y(T) = S(T)y(T) 
to (2.8), (2.9), (2.10) and by subtracting from (2.33), (2.34), (2.35), we get the 
problem 

(2.43) (XTY)Y - tA(t)(XT-y) O, 1 < t < T, 

(2.44) B(XT - y)(1) - 0, 

(2.45) S(T)(XT - y)(T) = -S(T)y(T). 

Applying estimate (2.39) implies 

(2.46) IIVTf- Vf 11 [1T] < constlly(T)II < const a(T)IIf f1 

where a is defined in (2.20). Also, we get 

(2.47) IIVTf- Vf 11 [l,o < 211 VTf- Vf II[1,T] + 2ll II [T,,O] 

because of (2.36). Therefore VT converges to V (in the norm) and 

(2.48) IIVT-V 11 [1,oI < const a(T) 

holds. 
It should be noticed that G(t) -- 0 as t -x cc is absolutely crucial for the norm 

convergence. 
The eigenvalue problem (1.4), (1.5), (1.6) is equivalent to 

(2.49) VTf ,ITf 

with 
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The generalized eigenfunctions of (1.4), (1.5), (1.6) are obtained by restricting the 
generalized eigenfunction of (2.49) to [ 1, T]. 

Because of the compactness of VT, there is a countable set of eigenvalues MT # 0 
possibly accumulating at 0. The compactness and norm convergence (2.48) allows us 
to apply Osborn's [16] result. From this and Theorem 2.1 we derive 

THEOREM 2.2. Let X be an eigenvalue of (1.1), (1.2), (1.3) with algebraic multiplicity 
m. Then, for T sufficiently large, there are exactly m eigenvalues AT,... , T and these 
satisfy 

(2.51) 1A.--iTI 
+ 

C + )(1)M 

(2.52) - A | const exp (V ) Ta+ 

where 1T (1/m)L1 1/ST and ,B is defined in (2.24). Moreover, the spectral 
projections 

(2.53) T 2 (z- VT) dz 

satisfy rank(ET) m and 

(2.54) gap(Range(E), Range(ET)) ? const+exp( + l Ta'l) 

holds. 

The constants in (2.51), (2.52), and (2.54) are independent of T but may very well 
depend on X. Sharper estimates will be proven in Section 3. 

A possible choice for S(T) is 

(2.55) S(T) -S--(G+) TF-1, 

where the superscript T denotes transposition. The condition (2.38) is satisfied 
because 

(2.56) SFG+ = Ir+ 

holds for the choice (2.55), which has been used by de Hoog and Weiss [7] for the 
solution of inhomogeneous boundary value problems on infinite intervals. 

3. The Case G(oo) # 0. Again we consider the problem (1.1), (1.2), (1.3), but we 
drop the restriction G(oo) = 0. We again assume that B is an r_ X n matrix. 

The following assumption will be needed. 
(I) The problem 

(3.1) yh - taA(t)yh =, 1 < t < Xc, 

(3.2) Byh(l ) = 0, 

(3.3) ~~~~~~~~Yh E C ( 1, Co X]) 

has the unique solution Yh = 0. This guarantees that the r_ X r _ matrix 

(3.4) BF4- (1) is nonsingular, 

and therefore the inhomogeneous problem 

(3.5) y'- taA(t)y AI taG(t)f(t) 1 t < X, 
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with the boundary conditions (3.2) and (3.3) has a unique solution for every 

f E C([1, xo]). Moreover, we restrict the eigenparameter X to an open and connected 
set Q C C with 0 E Q, so that the matrix A(oo) + XG(oo) for X E Q has no 
eigenvalue v(X) on the imaginary axis, and therefore the matrices G+ and G_ are 

constant for X E U. 
De Hoog and Weiss [6] proved that all eigenvalues X of (1.1), (1.2), (1.3) which 

fulfill A E Q are isolated and that the associated spectral subspaces are finite 

dimensional. Each (generalized) eigenfunction y associated with an eigenvalue X E Q 

satisfiedy(oo) = 0. The spectrum of (1.1), (1.2), (1.3) has no finite limit point in U. 

Of course this settles the case G(oo) = 0 completely because then Q = C holds, 

but the compactness arguments in Section 2 were included because they will be used 
in Section 4 where imaginary eigenvalues of A(oo) will be admitted. 

We define the operator V differently than in Section 2: 

(3.6) V: cc([0, x]) 0 co([i, 00]), 

where Co([1, xc]) is the Banach space of all functions f E C([1, xc]) which satisfy 

f(oc) = 0 and y is the solution of the problem (2.8), (2.9), (2.10). Assumption (I) 

makes V well-defined on C0([ 1, xc]), and (2.6), (2.1 1) guarantee that y(xc) = 0 if 

f(c) = o. 
The eigenvalue problem (1.1), (1.2), (1.3) is equivalent to 

(3.7) Vf = yf, f co([', c]), 

with 

(3.8) 1/X, Xe 2, 

because all generalized eigenfunctions associated with X E Q are in Co([ 1, cc]) and 

because A = 0 is no eigenvalue. 
Now let us consider a fixed eigenvalue y = 1/X, X EE Q, with algebraic multiplicity 

m and ascent ,8. The spectral projection is again given by 

(3.9) E = E() = f (z - V-)' dz: CO([I, oo]) Co([i, oo]), 

where the circle F centered at y contains no other eigenvalue of (3.7) and the image 

of F under the mapping X 1/y (denoted by (I/p)(F)) is in U. E satisfies (2.24), 

(2.25). 
We want to approximate the generalized eigenpair (X, Range(E(p))) by a se- 

quence of nearby eigenpairs of (1.4), (1.5), (1.6). 
Therefore we define the operators VT for T sufficiently large 

(3.10) VT 
fC([i, T]) C([i, T]), 

(3.10) 
V~~~~~~T:f ---- VTJfT XT,I 

where XT solves (2.33), (2.34), (2.35), S(T) is independent of A and satisfies (2.37), 

(2.38). Then the VT's are defined properly and satisfy 

(3.11) 11 VTfT 1 [1,T] < constllfT 1 [1 ,T]' 



EIGENVALUE PROBLEMS ON INFINITE INTERVALS 429 

Therefore each VT is compact and has a countable set of eigenvalues 11T 0 0 which 
may only accumulate at 0. The associated spectral subspaces are finite dimensional. 

It is therefore clear that the finite interval problems (1.4), (1.5), (1.6) cannot be 
used to approximate continuous parts of the spectrum of (1.1), (1.2), (1.3) which may 
very well exist outside of C2. 

We define the restriction operator 

(3.13) 
Y 

r: 
Cf([ , X]) C([1, T]) 

Then, for every sequence Tn - , the sequence of spaces C([1, T1]) forms a discrete 
approximation A(Co([1, so]), C([1, T]) rT ) for the space Co([1, oo]) in the sense 
of Stummel [17]. 

A sequence fT e C([1, T]) is said to converge to an element f e Co([1, oo]), 
denoted byfT -* f, if 

(3.14) 1fT 
- 

rT"A|[l,T]- O as n -o. 

A sequence of bounded operators AT on C([1, Tn]) is said to converge to a bounded 

operator A on Co([1, oo]), again denoted by ATn -* A, if for everyf E Co([1, oo]) and 
for every sequence fT' 

(3.15) fT,* f implies AT fT- Af. 

We will drop the subcript n mostly. 
Taking a fixed z # 0 in the resolvent set of V and in (1/X)( 2), we investigate 

(z - VT)'. Setting UT= (Z -VT)-1fT for an arbitrary fT E C([1, T]), we easily 
find that 

(3.16) UT 1 (YT + M 

where YT solves 

(3.17) yT- ta(A(t) + IG(t))y =ItaG(t)fT, 

(3.18) BYT(1) = O, 

(3.19) S(T)YT(T) = 0. 

Defining F(1lz) as the matrix which transforms A(oo) + G(oo)/z to its Jordan 
canonical form (which is assumed to be partitioned as in (2.2) for 1lz E Si), we 
derive from de Hoog and Weiss [7] that (3.17), (3.18), (3.19) is uniquely soluble for T 
sufficiently large if 

(3.20) (S(T)F(I )G < const as T -o 

and the estimate 

(3.21) II(Z - VT) -II [1T] < const(z) 

follows if (3.20) holds. This bound is uniform in z E K1, where K1 is compact, 
0 Z K1 and (l1/)(K,) C C2 (see Kreiss [10]). 
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This analysis also shows that 

(3.22) (z - VT) (Z 
- 

V) 

uniformly for z e K1. Therefore (3.20) guarantees that 

(3.23) infI P T-PT IO for t oo, 

where p E (1/X)(SI) are the eigenvalues of V and PT are the eigenvalues of VT. 
Moreover the spectral projections satisfy 

(3.24) ET(y) - VT)'dz E(U), 

(3 .25) lim rank(ET(G)) >_: rank( E(y)). 
T- oo 

The sets Range(ET(W)) form a discrete approximation 

A (Range(E(O)), TI Range(ET(P)), rT) 

for Range(E(p)); see Grigorieff [3]. 
In order to make sure that rank(ET(G)) rank(E(p)) for T sufficiently large, it is 

sufficient to show that the sequence ET(P) is discretely compact (see Stummel [18]) 
because E(y) has finite rank. 

We recall that the sequence of bounded operators AT in C([1, T7]) is discretely 
compact if for every bounded sequencefT E C([ 1, 7n]) there is a subsequence k so 
that AT fT " is convergent to an element in Co([ 1, oo]). 

We write 

(3.26) ETrT rTE + (ETrT- rTE): C0([l, oo]) C([1, T]). 

Obviously, 

(3.27) ETrT-rE 21fri (z- VT)'(VTrT- rTV)(Z - V)'dz 

holds. 
For an arbitrary f E Co([1, oo]), the function eT = (VTrT - rTV)f E C([1, T]) is 

the solution of the problem 

(3.28) eT - tA(t)eT , < t < T, 

(3.29) BeT(l) = 0, 
(3.30) S(T)eT(T) = -S(T)(Vf )(T). 

Proceeding similarly to de Hoog and Weiss [7] we can express eT explicitly. 
We substitute FeT= eT, where F is as in (2. 1), and get the problem 

(3.31) e = taJ(oc)jT + ta(J(t) - J(o))jT. 

J(t), J(oo) are as in (2.11), (2.2). Now we write 

(3.32) eT- =eT + ej 2 E, Te cr?, Te cr-, 
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where eT, 
eT satisfy 

(333) ~+ (t) -[exp( 
i + (t'- To"))] + (HT(J-J(X))e )(t), 

(3.34) - ) ( ) |(T + (HTJJ( -))- )() 

HT is a suitable solution operator of the problem 

(3.35) z' = taJ(t)z + tag(t), 1 < t ? T, g E C([1, T]). 
We choose 

(3.36) (HTg)(t) - (Hg)(t), 1 ? t s T, 

with H defined in (2.4) where g has been set to 

{g(T), T s t < o o . 

Because H is bounded on [8, oo] independently of 8, we get 

(3.38) IIHT(J - J(AXo))It[3 T] s constllJ - J(oo)II[ ,T < 

for 8, T sufficiently large. The operator 

(3.39) I - HT(J - J(cx)): C([8, T]) -* C([S, T]) 
is invertible and eT+, eT C([8, T]) are uniquely defined and can be continued to 
[1, T]. 

Inserting (3.32) into the boundary conditions (3.29), (3.30) gives 

[ BFeT (l sTBFei (1) 1 T 
(3.40) [STF(T) TF (1 [2J 

0 
/ 

De Hoog and Weiss [6] showed that 

(3.41) (a) lim e+ (T) G+, (b) Ii 
- rT0,[T] 0 as T oo 

hold, where 4_ is defined in (2.12). 
A block system of the form 

(3.42) [C D ]a4 ) () 

where B, C are quadratic matrices, is uniquely soluble if and only if B, (C - DB- A) 
are invertible and the solution is 

(3.43) 

{ (, j f -(C -DB-' ) B-1 (C -DB-'A a- 
LB- + BA(C-DB-1A)- DB-1 fB-A(7 -B-)-- 

The off-diagonal matrices in (3.40) are invertible, their inverses are bounded as 
T so, the matrix in the (2,2) position converges to 0 as T -- oo, and the matrix in 

'1, 1) position is bounded, and therefore the system is invertible for T sufficiently 
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large. Moreover, 

(3.44) lim e+ (1) = 0 
T oo 

holds because we get from the series expansion of (3.33): 

exp a + 
Ta')) 

(3.44) (a)[3T 

where c(t) = ta?l has been set. The right-hand side of this inequality can be 

estimated by 

a (K, T) =C max max [ l J(t )-J(oo) llexp( +( ta Ta+?)) 

(3.44) (b) i=1(1)k max (TIJ(i' 
X(Ta+l -ta+?)i), 

where K iS the smallest (positive) real part of the eigenvalues of Jo+, and k is the 

dimension of the largest Jordan block with eigenvalue with real part K. Obviously 

6J(K, T) -O 0 as T - oo, and (3.44) follows by continuation to [1, T]. 
We get from (3.40), (3.41), (3.43), (3.44) that 

(3.45)(a) T - ((S(T)FG )' + o(T))S(T)(Vf )(T), 

(3.45)(b) T = o(T)S(T)(Vf )(T) 

holds. For g E Co([1, oc]) we therefore obtain 

(VTrT- rTV)(z - V) g 

(3.45)(c) (-Fe+ (S(T)FG+)' + Fei o(T) + o(T))S(T)(V(z - V) 'g)(T). 

Obviously h = V(z - V)- 'g is the solution to the problem 

(3.46) h'- ta( A(t) + IG(t))h =- ItaG(t)g(t), 

(3.47) Bh(1) = 0, 

(3.48) h e CO([ 1, oo]). 

We define 

(3.49) A(t, X) A(t) + XG(t) for t e [1, oo], 

and the family of operators H(X): C([8, oc]) C([8, oc]) 

(H(5A)g)(t) ~ = (,-A|P (A+(s, XA)s 'g(s) ds 

(3.50)0 

+f(tr 8)1tP (,)'-1 wher)e(s) d 

for 8 > I, where 
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(3.52) (a) P+ (X) =F(X)D + F-(X), (b) P_(X) =F(X)D-F-'(X) 

hold. Obviously H(O) FHF- ' for H as in (2.4). The projections P+ (X), P_ (X) are 
holomorphic in C2; see Kato [8]. 

Using the techniques of de Hoog and Weiss [6] and Markowich [13], we conclude 
that 

(3 .53) |H()) | o C) , 

where C(X) is independent of 8 and bounded on a compact set K C S2. Moreover it 
is an easy exercise to show that (H(X)g(-, X))(t) is holomorphic in K for all 
t E [8, oo] if g(t, X) is continuous for t E [1, oo] and holomorphic (for all t) in 
X e K. 

Proceeding as in Section 2, we rewrite (3.46) 

(3.54) h'= taA(oo, I)h + ta A (t,) -A(x, -) h + ItaG(t)g(t) 

B(t ,) 

and get 

(3.55) h(t) <t, !) (!) H ( ()B(. )h)(t) + H Ggt) ( ) ( ) ?( 'z ) (z ) ((z )('z ) () z ((z )g ) 

where the columns of the holomorphic n X r_ matrix W- (1 z) span the range of 
P_ (1 z) and ' E cr-. Because of (3.53) there is a fixed 8 so that 

(3.56) H (z)B( ) )[3,o < 2 forallz ES, 

where S, is the closed disk contoured by F. 
Setting 

(3.57)(a) X) = (I-H X) W (), 

(3.57)(b) 42(Gf, X) = (I-ft(X)B(., X)) H(X)Gg, 

the general solution of (3.46), (3.48) on [8, oo] is 

(3.58) h (t) = _(t t + z G (g, z 

4'(Gg, X) can be uniquely extended to [1, oo]. 
Proceeding as in (2.19) using (3.53), we get 

(3.59)(a) Tf ( I-) = o(T) uniformly for z e F, 

and 

(3.59)(b) 1111 0(11 gll ) uniformly forz E F, 

can be concluded as in Section 2 using (3.56). 
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(3.56) and the uniform convergence of the series expansion of (3.57) assure the 
analyticity of ,4(Gg, I/z)(T) for z E S,1 and continuity in S,,. Therefore 

(VTrT- rTV)(z - V) g 

(3.60) - (-Fj+ (S(T)FG+ + Fei o(T)+o(T)) 

X (IS(T)4 (Gg, )(T) + o(T)) 

UT (z - VT)- 'F+ is the solution to the problem 

(3.6 1)(a) UT - tA (t, z ) =0, 

(3.61)(b) BuT(1) 1-BFj+ (1), 

(3.61)(c) S(T)uT(T) =1S(T)Fj+ (T) z T 

We set similarly to (3.32) 

(3 62)(a) U~~T(t) eT (,z )l + T (,z )2 

where 

eT+ (t, ) - +(t, X)7-'(T, X)W+ (X) 
(3.62)(b) + (Ht(X, T)B(., X)eT+ (-, X))(t), 

(3.62)(c) eT- (t, X) - j(t, X)W (X) + (H(X, T)B(, )e- (, ))(t) 

hold. The columns of the holomorphic matrix W+ (X) span the range of P+ (X) and 
H(X, T): C([8, T]) C([8, T]) so that 

(3.62)(d) H(X, T)g H(X)g, g(t) - fg(T), t ? T, 

holds. Because of (3.53) the equations (3.62)(b), (c) are uniquely soluble for all 
z E St if 8 is sufficiently large, and the analyticity of eT+ (t, 1 z) for all t E [1, T] 
follows by the above argument and by continuation from [8, T] to [1, T]. 

Moreover, we derive as in (3.41) from de Hoog and Weiss [6] 

(3.63)(a) lini eT+ (T, 
I = W+ 

I 

(3.63)(b) eT (r rT ( | T 
z 

T ~~~Z [1iT] 

and as in (3.44) 

(3.63)(c) lim eT 1,p) = 0 

uniformly for z e F. 
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Inserting into the boundary condition (3.61)(b), (c) results in a block system of the 
form (3.42) and using (3.43) gives 

UT= eT(*)(( S(T)W+ () T)FG? ?o(T) 

(3 .64) (a) 
+eT ,zo(T) 

uniformly for z E F. The solvability of the problem (3.61) follows from the invert- 
ibility of the (analytic) matrix S(T)W+ (1lz) which is a direct consequence of 
Assumption (3.20). Combining all gives 

((z - VT) '(VTrT - rTV)(Z - V) 'g)(t) 

(3.64)(b) z2e+ t, Z)(S(T) W+(Z) S(T) (Gg, Z)(T) 

+eT (tI Z-A,(T, z) + (z - VT) 'Fj (t)A2(T, Z) ? A3(T, Z), 

where 

(3.65) jjA1(t, z)jj <o(T)II gI[1 O] fori 1,2,3, 

uniformly for z E F. 
The first summand on the right-hand side of (3.64)(b) is holomorphic in S1 and 

continuous in S,,. Therefore its contour integral along F vanishes. 
Now we define the imbedding operators 

(3 .66)(a) iT: C([ 1, T ]) CO([ 1, o]), 

Mf(t) 1 <t T, 
(3 .66)(b) (T fT )( t) fTfT ) T, t ,> T. 

Obviously rTiTfT = fT and Il 'TfT 11 [l,oo] =l fT 11 [1,T] hold. 
Because of (3.64), (3.65) the operator 

(3.67) (z - VT) '(VTrT - rTV)(Z - V) ET: C([1, T]) C([1, T]) 

is discretely compact for every z E F, and the contour- integral-operator (3.27) is 
also discretely compact, see Grigorieff [3]. Because Range(E) is finite dimensional, 
rTEiT is discretely compact and so is ETrTiT = ET and 

(3.68) rank(ET( )) rank(E(p)). 

Therefore it is guaranteed that the eigenvalue p = I/X is stable with regard to the 
VT's (see Grigorieff [3]), so that there are exactly m = rank(E(p)) eigenvalues 
It T ..., of VT which converge to p, and the estimates 

(3.69) gap(Range(ET), rT(Range(E))) < constll(VTrT - rTV) IRange(E) rl [,T] 

and 

(3.70) max( | - - , max I XI| ) < constll(VTrT-rTV) IRange(E) 1[,T] 

hold; see Grigorieff [3]. 



436 PETER A. MARKOWICH 

However, a stronger estimate can be derived by proceeding as Osborn [16] did but 
without carrying out the last estimates which lead to his Theorems 1, 2, 3. In the 
same way the estimates given by Grigorieff [3] can be changed. We get 

(3.71)(a) gap(Range(ET), rT(Range(E))) < constll(ETrT -rTE) IRange(E)"' 

(3.71)(b) max(4I- i1(1)m 
I T x ) 

< constll(ET(VTrT- rTV)) IRange(E)IL 

An estimate for the right-hand side of (3.71)(a) can be obtained by using (3.64)(b) 
with g E Range(E) and (3.65). We obtain, collecting the results, 

THEOREM 3.1. If the problem (1.1), (1.2), (1.3) satisfies (3.4) and if (3.20) holds, then 
to every eigenvalue X E t2 of (1.1), (1.2), (1.3) with algebraic multiplicity m there are 
exactly m eigenvalues XT of (1.4), (1.5), (1.6) in a sufficiently small neighborhood of X 
and they fulfill 

(3.72)(a) I XX Iconst o(T) /exp( ( )?8 aoo? 

(3.72)(b) X- <consto(T)exp( (?) -Ta+?), T - oo, 

where fT and A are defined as in Theorem 2.2 and v_ (X) is the largest (in modulus) 
negative realpart of the eigenvalues of A(oo) + XG(oo). The spectralprojections satisfy 
rank(ET) = m and 

(3.72)(c) gap(Range(E), rT(Range(Er))) < const o(T)expV ( ) + Ta+ 1 
TM ~ ~ \a? / 

as T - 0o. 

Therefore the standard error estimates are not sharp for this problem. Tracing the 
history of the o(T), we get 

(3.73) o(T) < max(IIA(T) - A(oo)II, IIG(T) - G(oo)II, a (K + ?,, T)), 

where a- is defined as in (3.44)(b) and ? is small when the radius of F is sufficiently 
small. 

S(T) can be chosen independently of X for a large class of problems, for example, 
if G(oo) is regular. In this case we can set G(oo) = I because this always can be 
achieved by a linear transformation. Then F(X) F and (3.20) is equal to (2.38). C2 

is then the strip v_ < X < v+ where v_ is the largest negative and v+ is the smallest 
positive real part of eigenvalues of A(oo). In this case the asymptotic boundary 
condition (2.55) can be used. 

In the case that G(oo) # 0 is not regular, S(T) can be chosen independently of X 
if we know a sufficiently close approximation X E C2 to an eigenvalue X of (1.1), 
(1.2), (1.3). Then we rewrite (1.1) as 

y- ta(A(t) + XG(t))y = ytaG(t)y, y = X-. 
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The isolatedness of the eigenvalues X E C2 guarantees that the problem 

(3.75)(a) Yh - toi(t)y, 0, 

(3 .75)(b) BYh(l1) = 0, 

(3.75)(c) Yh E C([i1, oo]) 

has only the trivial solution Yh-0 if X is sufficiently close to X. Therefore the above 
theory can be used for the eigenvalue problem (3.74), (1.2), (1.3) (with y as 
eigenparameter). The change consists of taking X instead of 0 as reference point. 

We set 

(3.76) S S(T) = (G+ )TF-1(X) 

where the superscript T denotes transposition and F(X) transforms A(rc) + XG(00) 
A(oo) to its Jordan canonical form. 
Defining F = F(X), (2.40), (2.41) follows immediately. 
From the analysis for the approximating problems (1.4), (1.5), (1.6) it follows that 

it is sufficient to require that (3.20) holds locally if the particular eigenvalue X is to 
be calculated. "Locally" means in this context the closed set bounded by the contour 

(1/4)(F) defined in (3.9). 
Since the family of projections F(X)D+ F- (X) is holomorphic in 2, there is a 

nonsingular r+ X r+ matrix T(X) so that 

(3.77) W+ (X) = F(X)G+ T(X) is holomorphic in Ui. 

Therefore 

SF(X)G+ T(X) (G+ )T F-'(X)(F(X)G+ T(X) + 0(1 X -X 1)) 

=T(X) + ?( X- X1) 

holds, and 

(3.78) (SF(X)G+ ' =T(X)T(X)- + 0(1 X -X)) 

for X sufficiently close to X. So (3.20) holds locally for X close to X, and the 
asymptotic boundary condition (3.76) can be used for the calculation of X. 

This analysis leads to the idea to use asymptotic boundary conditions which 
depend on the eigenparameter X. This leads, even in the case that the 'infinite' 
problem is a linear eigenvalue problem, to nonlinear approximating 'finite' ei- 
genvalue problems which, suggested by Keller [9], have been successfully used in 
computation (see Ng and Reid [15]), and their analysis will be presented in a 
subsequent paper. 

However, for many important fluid-dynamical problems it is possible to choose 
simpler asymptotic boundary conditions. An example is presented in Section 5. 

4. Imaginary Eigenvalues of A(oo). We are now going to neglect the crucial 
restriction that all eigenvalues of A(oo) have a nonzero real part, but we will require 
a sufficiently fast convergence of G(t) to 0 which puts us back into the compactness 
argument of Section 2. 

We assume that 
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(4.2) tG(t)lg < const o (an )ko egnu > 0 

where k is the largest algebraic multiplicity of an eigenvalue of A(oo) with real part 
zero and k_ is the largest algebraic multiplicity of an eigenvalue of A(oo) with 
negative real part. 

Markowich [12], [13] has shown that there is a solution operator H of the 
inhomogeneous problem (2.8) which fulfills 

(4.3) II(ftf)(t)II < const t-e(ln t)JIIf [l ], < j < n, 

if (4.2) holds. 
Therefore, if the homogeneous problem (2.8), (2.9), (2.10) has only the trivial 

solution y = 0, then the operator V (see (2.16)) is well defined, and as the sum of a 
degenerate and a compact operator it is compact and the same consideration as in 
Section 2 holds for the eigenvalues and the generalized eigenvectors, except the 
decay statements, because the eigenvalues with real part zero may produce solutions 
which are asymptotically constant or which decay algebraically. An algorithm which 
determines the nature of the basic solutions under the assumption (4.1) is given in 
Markowich [13, Sections 3 and 4]. 

The construction of the supplementary boundary condition S(T)xT(T) = 0 for 
the approximating problems (1.4), (1.5), (1.6) now relies heavily on the asymptotic 
nature of the basic solutions and is explained in Markowich [14, Sections 3 and 4]. 
The matrix S(T) constructed in the mentioned paper takes care that the basic 
solutions, which are in C([1, oo]) but which do not decay sufficiently fast, are 
dampened by the multiplication with S(T) so that norm convergence of the 
operators VT, defined as in (2.32), to V results; see Markowich [14, Section 4]. 

Exponential convergence of eigenvalues and spectral subspaces holds if all (basic) 
solutions of the problem 

(4.4) Y'-- A(t)Y = 

(4.5) y e C([1, oo]), 

decay exponentially. 

5. The Off-Sommerfeld Equation. The Orr-Sommerfeld equation (see Ng and Reid 
[15]) governs the stability of laminar boundary layers in the parallel flow approxima- 
tion: 

(5.1) iR. ( d 2- a 
2 

-[(U(z) - 
dZ 2-a )a - U"(z)] =0, 

0 < z < 00, 

a E R, a > 0. k(z)ela(x`t) is the disturbance stream function, R > 0 is the Rey- 
nolds number, and U(z) is the velocity distribution fulfilling 

(5.2) U E c2([o, oo]), U(oo) = 1, U"(oo) = 0. 

The boundary conditions for the Orr-Sommerfeld problem at z = 0 and z = oo are 

(5.3) o(0) ='(0) = 0, 
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This problem is of singular perturbation type for R large, but we disregard this 
computational difficulty and just derive appropriate asymptotic boundary condi- 
tions. 

We substitute 

(5.5) y (T ' k T 

and get the problem 

A(z) G 

0 1 0 0 O O O O 
(5.6) I O O I O 

|Y 

= 

0L O ?< O ZC 

_fl (Z) ? f2(Z) 0 -a O b O- 

(5.7) [ 0 0 0o y(0) = 0, 
(5.8) y e C([0, oo]), 

where 

(a) fi(z) = - (a' + iaR(a 2U(z) + U"(z))), 

(b) f2(z) = 2a 2 + iaRU(z), 

and 

(5.10) (a) a = iaR, (b) b = -iaR. 

The eigenvalues of A(oo) are 

(5.11) v1 = a, v2 =(a 2 + iaR)"/2, V3 = -a, v4 (a2 + iaR)1/2 

so that Re vP, Rev2 > 0; Re V3, Re V4 < 0 and the eigenvalues of A(oo) + AG are 

(5.12) v1(A) = a, v2(A) (a2 + iaR(1 - A)) 1/2 

v3(A) = -a, v4(A) = (a2 + iaR(1- A)) /, 

so that Re PI(A), Re v2(A) > 0; Rev3(A), Re v4(A) < 0 for all A e Q - C - 

{A j Re A = 1, Im A < -aoR} holds. We get 

(5.13)(a) J(oo) = diag(v1, v2, v3, v4) forA e - {1}, 

and 

(5.13)(b) J(oo) v I forAX 1 
? 2 

so that 

4 G 1 0 
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holds. We calculate 

(5.15)(a) F(X) V 1(2(1) for X e Q-{ 1 }, F(O) F, 

V(A)*1(1)4 

1 0 1 0 

(5.15)(b) F(l) a2 
I - 

o 
[a2 2a a 2 a2 

La3 3a 2 a 3 a2 

All eigenvalues A E Q are isolated and have finite algebraic multiplicities. 
We choose the matrix S(Z) which sets up the asymptotic boundary condition 

S(Z)yz(Z) = 0, Z > 0, independent of Z, so that 

(5.16) s(z) S = (Slj) 1,2; j= 1,2,3,4 

holds. Then the regularity condition (3.20) reduces to: 

4 4 

2 S1jaj-l 2 Sljv2(X)j ' 

(5.17) det 4 
# = 

0 forAeX - {1}, 
4 4 

E S2jaj-'' z S2p2(X)j ' 

j=1 j=1 

and 

4 4 

E SI1aj- 
I 

Slj(j- -)aJ-2 

(5.18) det 4 #0 forA= 1. 

]E S2jaJ-1 ]E S2j(j - I)aJ -2 
j=1 j=1 

For example, the 'natural' asymptotic boundary condition 

(5.19) S=[ 
I 

? ?]0 

satisfies (5.17) and (5.18). 
The order of convergence for eigenvalues and spectral subspaces of the approxi- 

mating problems (1.4), (1.5), (1.6), where S fulfills (5.17), (5.18), at a particular 
eigenvalue A e Q of (5.6), (5.7), (5.8), can be estimated by 

(5.20) o(Z)exp((max(- a, Re V4(A)) + c)ZI 1), 
where 

ReA4()= -(a2 +? aRImA 

(5.21) 1/2 

+ ((a + aRIm A) a2R2(1 -Re 

holds and ,tZ4 
holds and 13 is the ascent of A. 
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Computation of the Orr-Sommerfeld problem using the boundary conditions set 
up by (5.19) can be found in Grosch and Orszag [4]. They used the Blasius velocity 
profile U(z) = 1 + O(e-wz ), w > 0. 

Their numerical experiments indicate that the order of convergence is e-2az in the 
case that a < I Re v4(X) I < 1 and X has ascent 1. Checking our order formula (3.73), 

(3.79) gives 

(5.22) o(Z) ? max( e-wZ2, max e Wz2+(a-e)(z- Z) ) const e(a?+e)Z 
zE[3, Z] 

and the order of convergence the theory predicts is e-2(ao-)Z for eigenvalues and 
spectral subspaces at eigenvalues with ascent 1. 
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